Extra-articular Distal Humerus Bridging Plate: a Minimally Invasive Technique

Luis Guilherme Rosifini Alves REZENDE, Filipe Jun SHIMAOKA, Luiz Garcia MANDARANO-FILOH, Nilton MAZZER

Abstract

Extra-articular fractures of the distal humerus are challenging due to their peculiar location and anatomy. It challenges the surgeon to choose the best osteosynthesis method and approach. We present a minimally invasive technique by bridging the LCP Extra-articular distal humerus plate (DePuy-Synthes). The indication for this method was fractures classified as AO/OTA type 13A2 and 13A3. Concerns about the radial nerve pathway to avoid its injury are crucial to perform this technique. Possible complications are shortening, rotational displacement, nerve injury and wrong plate and screw positioning.

Descriptors: Humerus; Humeral Fractures; Orthopedic Fixation Devices.

Resumo

As fraturas extra-articulares do úmero distal são desafiadoras devido à sua localização e anatomia peculiares. Desafia o cirurgião a escolher o melhor método e abordagem de osteosintese. Apresentamos uma técnica minimamente invasiva através da ponte da placa extra-articular do LCP (DePuy-Synthes). A indicação desse método foram as fraturas classificadas como AO/OTA tipo 13A2 e 13A3. A preocupação com o trajeto do nervo radial para evitar sua lesão é fundamental para a realização deste método. As possíveis complicações são encurtamento, deslocamento rotacional, lesão do nervo e posicionamento incorreto da placa e do parafuso.

Descritores: Úmero; Fraturas do Úmero; Dispositivos de Fixação Ortopédica.

Introdução

The distal humerus fracture challenges orthopedic surgeons due to its complexity and uncommon routine—the complex anatomy bewilders the management and the choice of the osteosynthesis method and approach. Even the most experienced surgeons have hardship if they minimize their complexity because of unexpected comminution and bone stock. Distal humerus fractures account for 0.6 to 2% of all fracture types in a bimodal pattern, being the extra-articular more common. The younger group has a high energy pattern between 21 and 30. The Elderly Group has a low-energy pattern (fall from the height) between 60 and 80 years old.

The gold standard is open reduction and internal fixation (ORIF) of the extra-articular fractures. Thus, allowing immediate bone stabilization, early range of motion and decreasing the complications of the non-operative management. However, there are complications as infection, iatrogenic nerve injury, and the possibility of more surgical operations.

Extra-articular fractures management requires bone stabilization and rotational resistance forces, allowing shoulder and elbow active range of motion. Regardless, the fracture site should select the osteosynthesis device method and approach. Diaphyseal humerus fractures are usually managed with straight 3.5 or 4.5mm plates and screws. But they are not suitable for low diaphyseal fracture patterns or "extra-articular distal humerus fractures). These situations claim to use orthogonal plates or parallel plates (anatomic pre-fabricated shaped versus hand-molded). Remark that underdeveloped countries sometimes need to use a self-hand-molded plate.

The current approach is widely open to expose the fracture focus, which morbidity decreases local vascular supply. It’s painful and cares the risk of infection and wound complications. It could delay the rehabilitation.
protocol. Many authors described good outcomes for managing diaphyseal humerus fractures with minimally invasive methods. These techniques have less soft tissue damage, higher union rates and low infection rates. However, they do not allow radial nerve identification. Given this, many authors are concerned about the radial nerve. Furthermore, the minimally invasive technique for the distal humerus has several disadvantages: the cylindrical and thick in its diaphysis and the thin and triangular epiphysis. Therefore, it has a small area to place the screws and fixation points.

We used the LCP Extra-articular distal humerus plate (DePuy Synthes®, West Chester, PA) to manage these fractures for the last five years. This plate shapes the distal humerus’s posterolateral anatomy, providing distal and proximal fixation holes.

This study aims to describe a minimally invasive technique modification to internal fixation of the extra-articular distal humerus fracture using the DePuy Synthes.

TECHNIQUE AND APPROACH

The patient is positioned in a lateral position with the elbow placed in an arm-holder, using two approaches in the skin.

The proximal approach is landmarked 10 centimeters distal to the posterolateral angle of the acromion process. A five-centimeter incision is made over the proximal skin, and the interval between the long and the lateral triceps brachii heads and the posterior deltoid border is developed. At this point, the radial nerve is identified and carefully protected. A sliding tunnel is developed using a finger or rugine in a distal direction (Figure 1 and 2A).

The distal approach is a five-centimeter landmarked straight incision at the level of the posterior humerus. It’s placed two centimeters lateral to the olecranon fossa (or to the tip of the olecranon). The triceps aponeurosis is dissected until the lateral column is visualized (Figure 2B).

The pathway of the radial nerve is from medial to posterior 20 centimeters above the lateral epicondyle, lying over the site of the proximal plate. It runs over the posterior surface of the humerus, crossing from posterior to lateral (and anterior) by 11 to 14 centimeters over the lateral epicondyle. Awareness of these parameters is essential to avoid iatrogenic injury.

The fracture is reduced, and the plate is inserted distal to proximal. It’s essential to avoid shortening of rotational displacement and radial nerve impingement. The plate is placed on the posterior surface of the humerus at the proximal level. It’s left in the lateral column, at the level of the olecranon fossa. The plate acts as a bridging plate.

The most distal 3.5mm locked screw is first placed, followed by the most proximal 3.5mm locked (or don’t if the plate is well placed). Two more screws are placed in the proximal and three or four in the distal holes.

The use of fluoroscopy allows implant and fracture correct positioning. Avoid placing screws into the olecranon fossa. Hemostasia is carefully performed, and the wound is closed. Early ROM is then allowed, but we don’t advise resisted shoulder rotational motion in the first two weeks. Figures 3 and 4 present the final aspect of the bridging plate in a comminuted fracture and one of a simple fracture.
The extra-articular bridging plate is a method to manage fractures classified as A1. The concerns about radial nerve injury remain as a disadvantage for this method. However, bridging plate techniques are faster and easy to reproduce.\(^{18-25}\)

However, they depend on surgeon expertise. Indeed, we don’t advise younger surgeons to perform this technique. Distal humerus fractures are challenging, and there are many complications and technical details to manage them. The possible complications of the procedure are humerus shortening, rotational displacement and radial nerve injuries. They could be avoided using the step-by-step described earlier.\(^{18-39}\)

This technique best addresses distal humerus fractures classified by AO/OTA Classification System 13A2 and 13A3. In this case, we opt.

Regardless, distal humerus fractures have many complications reported that should be awarded to the patient. Elbow stiffness, loss of full range of motion, infection, wound disturbances and nerve injury are expected in all osteosynthesis methods.\(^{22,28,31-39}\)

The AO Group standard technique described for this plate differs from the bridging plate method described here. It was described as the conventional broad and open approach exposure. However, it isn’t exempt from risks and complications. Thus, we don’t advise this technique for early beginners or surgeons who don’t are familiar with this plate or use the distal humerus posterior approach.

CONCLUSION

We conclude that the minimally invasive posterior bridging plate using the LCP Extra-articular distal humerus plate (DePuy-Synthes) system is an alternative to extra-articular distal humerus fractures.

REFERENCES

38. Santos RR, Rahal SC, Neto CM, Ribeiro CR, Sousa EAC, Foschini CR, Agostinho FS,

CONFLICTS OF INTERESTS
The authors declare no conflicts of interests.

CORRESPONDING AUTHOR
Luis Guilherme Rosifini Alves Rezende
Department of Orthopaedics and Anesthesiology of the Hospital of Clinics of Ribeirão Preto Medical School of the University of São Paulo.
Av. Bandeirantes, 3900, 11th Floor, Ribeirão Preto, Sao Paulo, Brazil, 14900-090.
E-mail: lgrezende@usp.br

Received 19/01/2022
Accepted 28/03/2022