Polymerization Cycle and Occlusal Vertical Dimension of Complete Dentures: Systematic Review and Meta-Analysis

Cícilo de Polimerização e Dimensão Vertical Oclusal de Próteses Totais: Revisão Sistêmática e Metaanálise

Melanie Calheiros Miranda QUINTELLA
Universidade de Pernambuco – UPE, Faculty of Dentistry – FOP/ UPE, Department of Oral Rehabilitation, 54756-220 Recife - PE, Brazil
https://orcid.org/0000-0002-6540-5426

Eduardo Piza PELLIZZER
Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) – Araçatuba Dental School, Department of Dental Materials and Prosthodontics, 16015-050 Araçatuba - SP, Brazil
https://orcid.org/0000-0003-0670-5004

Belmiro Cavalcanti do Egito VASCONCELOS
Universidade de Pernambuco – UPE, Faculty of Dentistry – FOP/ UPE, Department of Oral and Maxillofacial Surgery, 54756-220 Recife - PE, Brazil
https://orcid.org/0000-0002-6515-1489

Cleidiel Aparecido Araújo LEMOS
Universidade Federal de Juiz de Fora (UFJF), Department of Dentistry, 35020-220 Governador Valadares - MG, Brazil
https://orcid.org/0000-0001-8273-489X

Jéssica Macela Luna GOMES
Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) – Araçatuba Dental School, Department of Dental Materials and Prosthodontics, 16015-050 Araçatuba - SP, Brazil
https://orcid.org/0000-0002-6261-6200

Rayana Thayse Florêncio COSTA
Universidade de Pernambuco – UPE, Faculty of Dentistry – FOP/ UPE, Department of Oral Rehabilitation, 54756-220 Recife - PE, Brazil
https://orcid.org/0000-0001-8336-8007

Hiskel Francine FERNANDES E OLIVEIRA
Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) – Araçatuba Dental School, Department of Dental Materials and Prosthodontics, 16015-050 Araçatuba - SP, Brazil
https://orcid.org/0000-0002-2433-8167

Leonardo Ferreira de Toledo Piza LOPES
Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) – Araçatuba Dental School, Department of Dental Materials and Prosthodontics, 16015-050 Araçatuba - SP, Brazil
https://orcid.org/0000-0003-5613-460X

Sandra Lúcia Dantas de MORAES
Universidade de Pernambuco – UPE, Faculty of Dentistry – FOP/ UPE, Department of Oral Rehabilitation, 54756-220 Recife - PE, Brazil
https://orcid.org/0000-0002-3154-5092

Abstract

The aim of this systematic review and meta-analysis was to assess the influence of the polymerization cycle on the occlusal vertical dimension (OVD) of complete dentures. This review was based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The PICO (Population, Intervention, Comparison, Outcome) question evaluated was “Does the microwave polymerization cycle influence the occlusal vertical dimension of complete dentures when compared to conventional water bath polymerization?”. The literature search was conducted in the PubMed/MEDLINE, Web of Science, and Scopus databases for relevant articles published up to March 2023. In vitro studies involving OVD measurement from complete dentures polymerized with different polymerization methods were included. The risk of bias was analyzed using the Critical Appraisal Checklist for Quasi-Experimental Studies (non-randomized experimental studies) from the Joanna Briggs Institute (JBI). The meta-analysis was based on the inverse variance (IV) methods with mean difference (MD) for OVD evaluation between techniques. Five articles were included in the qualitative and quantitative analysis. A total of 222 complete dentures were evaluated. In the polymerization cycles, microwave cycles with 90 W to 810 W between 3-12 hours (long cycles) and 3-4 hours (short cycles) were used. In a quantitative analysis of polymerization methods, no statistically significant difference was found between water bath and microwave techniques [p = 0.99; MD: -0.00; CI = -0.26-0.26]. The current meta-analysis can be concluded that both techniques can be used to polymerize complete dentures without significant clinical changes in the OVD.

Descritores: Polymerization; Dental Occlusion; Denture, Complete.

Resumo

O objetivo desta revisão sistemática e meta-análise foi avaliar a influência do ciclo de polimerização na dimensão vertical oclusal (DVO) de próteses totais. Esta revisão foi baseada nos principais itens relatados de revisões sistemáticas e meta-análises. A questão PICO (População, Intervenção, Comparação, Resultado) avaliada foi “O ciclo de polimerização por micro-ondas influencia a dimensão vertical oclusal de próteses totais quando comparado à polimerização em banho-maria convencional?”. A pesquisa bibliográfica foi realizada nas bases de dados PubMed/MEDLINE, Web of Science e Scopus para artigos relevantes publicados até março de 2023. Estudos in vitro envolvendo medição de DVO de próteses totais polimerizadas com diferentes métodos de polimerização foram incluídos. O risco de viés foi analisado por meio do Critério de Avaliação Aprazível para Estudos Experienciais (estudos experimentais não randomizados) do Instituto Joana Briggs (JBI). A meta-análise baseou-se nos métodos de variancia inversa (IV) com diferença média (MD) para avaliação da DVO entre as técnicas. Cinco artigos foram incluídos na análise quantitativa e qualitativa. Foram avaliadas 222 próteses totais. Nos ciclos de polimerização, foram utilizados ciclos de micro-ondas de 90 a 810 W entre 3-12 horas (ciclos longos) e 3-4 horas (ciclos curtos). Em uma análise quantitativa dos métodos de polimerização, não foi encontrada diferença estatisticamente significativa entre as técnicas de banho-maria e micro-ondas [p = 0.99; MD: -0.00; CI = -0.26-0.26]. A meta-análise atual pode concluir que ambas as técnicas podem ser usadas para polimerização de próteses totais sem alterações clínicas significativas no OVD.

Descritores: Polimerização; Oclusão Dentária; Prótese Total.

Resumen

El objetivo de esta revisión sistemática y metanalítica fue evaluar la influencia del ciclo de polimerización en la dimensión vertical occlusal (DVO) de prótesis completas. Esta revisión se basó en elementos de informes preferidos para revisiones sistemáticas y metanalítica. La pregunta PICO (Población, Intervención, Comparación, Resultado) evaluada fue “¿El ciclo de polimerización por microondas influye en la dimensión vertical occlusal de las prótesis completas en comparación con la polimerización en baño de agua convencional?”. La búsqueda bibliográfica se realizó en las bases de datos PubMed/MEDLINE, Web of Science y Scopus para artículos relevantes publicados hasta marzo de 2023. Se incluyeron estudios in vitro que involucran la medición de DVO de prótesis completas polimerizadas con diferentes métodos de polimerización. El riesgo de sesgo se analizó mediante el Critério de Avaliação Aprazível para Estudos Experimentais (estudos experimentais no aleatorizados) del Instituto Joana Briggs (JBI). El metanálisis se basó en los métodos de variancia inversa (IV) con diferencia de medias (DM) para la evaluación de DVO entre técnicas. Cinco artículos fueron incluidos en el análisis cualitativo y cuantitativo. Se evaluaron un total de 222 prótesis completas. En los ciclos de polimerización se utilizaron ciclos de microondas con 90 W a 810 W entre 3-12 horas (ciclos largos) y 3-4 horas (ciclos cortos). En un análisis cuantitativo de los métodos de polimerización, no se encontraron diferencias estadísticamente significativas entre las técnicas de baño de agua y microondas [p = 0.99; DM: -0.00; IC = -0.26-0.26]. El metanálisis actual puede concluir que ambas técnicas pueden usarse para la polimerización de prótesis completas sin cambios clínicos significativos en el OVD.

Descritores: Polimerización; Oclusión Dental; Dentadura Completa.
INTRODUCTION

Among acrylic resins, polymethyl methacrylate (PMMA) stands out due to its satisfactory properties, and it is widely applicable in dentistry in making partial and total dental prostheses\(^1-3\). Despite its wide use, acrylic resin has some limitations related to its physical properties, which can change according to processing techniques. In the case of complete dentures, this may lead to changes in the occlusal vertical dimension (OVD), with consequent changes in tooth positions\(^4-6\).

In the dental clinic, increasing the vertical dimension of post-dental occlusion will affect initial rehabilitation planning, requiring longer clinical sessions for occlusal reassembly and adjustment.\(^7\) A change in the OVD will also lead to occlusal trauma, irregular distribution of occlusal forces over the periodontal and alveolar bones, masticatory inefficiency, discomfort and adaptation difficulties, and ultimately, faster resorption of residual bone\(^8-10\).

Dimensional changes in occlusion and OVDs may occur after inclusion and polymerization of complete dentures and are influenced by several factors, such as different prosthetic processing methods, the shape and type of material used for inclusion, prosthetic pressing, and the polymerization cycle\(^4,7,17,18\). The method of evaluation in both the clinic and the laboratory uses linear horizontal and vertical measurements in dentures\(^6,7,9,11\).

Among the polymerization methods, we highlight the water bath and microwave methods. Water bath cycles favor the conversion of monomers to polymers, resulting in less residual monomers, which improves the properties of thermally activated acrylic resins\(^19,20\). However, it has some disadvantages, including increased technical sensitivity, longer laboratory time, higher cost, and a high energy demand in keeping the water bath heated for so many hours.\(^19,20\)

Microwave heat activation has emerged as an alternative, with the advantages of lower cost, less laboratory time, and increased efficiency\(^11,18,21-23\). However, there is still no consensus in the literature about which cycle would influence OVDs and artificial teeth positioning the least.

Based on scientific knowledge, it is possible to assume that any change in dimensional stability may occur in a complete denture during or after the polymerization process, affecting its clinical treatment success. Thus, the purpose of this systematic review and meta-analysis was to answer the following research question: Does the polymerization cycle influence the occlusal vertical dimension of complete dentures?

MATERIAL AND METHOD

The present systematic review was conducted following the guidelines under Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)\(^24\). This systematic review followed the PICO (Population, Intervention, Comparison, Outcome) question: “Does the microwave polymerization cycle influence the occlusal vertical dimension of complete dentures when compared to conventional water bath polymerization?” The population (P) is complete dentures, the intervention (I) a microwave polymerization cycle, the comparison (C) a conventional water bath polymerization cycle, and the outcome (O) an occlusal vertical dimension.

The inclusion criteria were randomized controlled trials (RCT), prospective and retrospective studies, observational studies, longitudinal studies, cohort studies, laboratory studies, and in vitro studies dealing with OVDs of complete dentures made by different polymerization methods (conventional water bath and microwave). Only studies involving OVD measurement from complete dentures polymerized in water and microwave bath polymerization methods were included. No language restrictions were imposed. The exclusion criteria were studies that did not evaluate or report OVD measurements, those with insufficient data, retrospective studies, animal studies, computer simulations, case reports, studies that evaluated associations with techniques, and published report reviews.

Two independent investigators (M.C.M.Q. and J.M.L.G.) conducted electronic searches of the PubMed/MEDLINE, Web of Science, and Scopus databases up to March 2023 for published articles reporting OVDs of complete dentures polymerized by conventional water bath and microwave methods using the following search terms: “((complete denture OR acrylic resin)) AND water bath) AND (microwave))”. There was no consensus among authors, a third investigator (S.L.D.M.) was consulted.

The first phase of the selection process involved analyzing the titles and abstracts retrieved during the search of the electronic databases. If sufficient information could not be gathered from the abstract, the complete article was obtained. The two researchers also performed a manual search for articles published up to March 2023 in specific journals in the field: The Journal of Prosthetic Dentistry, the International Dental Journal, and the Journal of Prosthodontics. A third reviewer (S.L.D.M.) examined the divergence of opinion between the two reviewers regarding the selection of articles, and consensus was reached through discussion.
Data extracted from the articles were quantitatively and qualitatively classified by one of the researchers (M.C.M.O.) and verified by another (C.A.A.L.). Divergence of opinion was resolved through discussion until a consensus was reached. The following information was extracted: author, type of study, sample size, polymerization cycle, OVD evaluation, evaluation of teeth position, occlusal contacts, and conclusion.

The risk of bias for the studies was analyzed using the Critical Appraisal Checklist for Quasi-Experimental Studies (non-randomized experimental studies) from the Joanna Briggs Institute (JBI; University of Adelaide, Adelaide, Australia) (Table 1).

Table 1. Risk of bias – JBI Critical Appraisal Checklist for Quasi-Experimental Studies (non-randomized experimental studies)

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Not Clear</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is it clear in the study what is the ‘cause’ and what is the ‘effect’ (i.e. there is no confusion about which variable comes first)?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were the participants included in any comparisons similar?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were the participants included in any comparisons receiving similar treatment/care, other than the exposure or intervention of interest?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was there a control group?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 1</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 2</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were there multiple measurements of the outcome both pre and post the intervention/exposure?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was follow up complete and if not, were differences between groups in terms of their follow up adequately described and analyzed?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reviewer 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The meta-analysis was based on the inverse variance (IV) methods. The variable evaluated was OVD evaluation. All variables were continuous. The mean difference (MD) and 95% confidence interval (CI) were calculated. All the analyses were conducted using a software program (Review Manager v. 5.3; The Cochrane Collaboration) using a random-effects model. A value of $P_{<.05}$ was considered statistically significant. Heterogeneity was evaluated using the I^2 value (25% = low, 50% = moderate, 75% = high)25. The effects of the meta-analyses were based on the heterogeneity of the studies.

Additional analysis was performed using the kappa statistic to calculate the agreement between investigators27. Disagreements were analyzed by a third investigator and a consensus was reached through discussion.

RESULTS

The initial search of the databases led to the retrieval of 221 articles: 79 in PubMed/MEDLINE, 65 from Web of Science, and 77 from Scopus. A manual search was conducted by the same researchers to explore grey literature, but no more articles were found. After removing duplicates, 107 articles were submitted for an analysis of titles and abstracts. After this step, 11 were selected for full-text analysis. Following the application of the eligibility criteria, six studies were excluded (OVD was not evaluated). Thus, 5 articles were included in the present review4,6,7,17,18 (Figura 1).

The JBI provides a framework for critical analysis of the methodological quality of selected studies25. These tools are built into the System for the Unified Management of the Assessment and Review of Information (https://joannabriggs.org/ebp/critical_appraisal_too ls). Each study is evaluated individually on ten items to be selected based on the characteristics of the studies, which are answered as follows: “Yes”, “No”, “Not clear”, or “Not applicable”. The analysis was conducted by two examiners and a union score of all studies was obtained.

![Figura 1: Flowchart describing the search describing and selection strategies.](https://joannabriggs.org/ebp/critical_appraisal_toools)
The kappa statistic was calculated to determine the level of agreement between evaluators in the initial selection of studies. It revealed a high level of agreement for PubMed/MEDLINE (κ = 0.91), Web of Science (κ = 1.0), and Scopus (κ = 0.98).

Five in vitro studies were included for qualitative analysis. The data collected were author/year, type of study, sample size, polymerization cycle, evaluation of occlusal vertical dimension, tooth position, occlusal contacts, and study conclusions (Table 2).

A total of 222 complete dentures were evaluated. In the polymerization cycles, microwave cycles with 90 W to 810 W between 3-5 minutes and water bath cycles between 9-12 hours (long cycles) and 3-4 hours (short cycles) were used. (Table 2)

Lima et al. used 4 polymerization cycles (microwave 1/MW1: acrylic resin cured by one microwave cycle; microwave 2/MW2: acrylic resin cured by two microwave cycles; water bath 1/WB1: conventional acrylic resin polymerized using one curing cycle in a water bath; water bath 2/WB2: conventional acrylic resin polymerized using two curing cycles in a water bath). However, the authors did not describe the control cycles (MW1 and WB1), only the combined cycles (MW1: 360 W for 3 min + 810 W for 3 min; WB2: 3h at 60°C + 9h at 70°C + 12h at 25°C; according to the manufacturer's instructions).

Silva-Concilio et al. used a microwave cycle (20 min at 180 W / 5 min at 540 W) and one long water bath cycle (9h at 73°C). Slaviero et al. used 2 microwave polymerization methods (500 W for 3 min; 320 W for 3 min + 0 W for 4 min + 720 W for 3 min for Wave Cryl resin) and a short polymerization method for water (conventional double-boiling at 73°C for 3h + 100°C for 30 min).

Barbosa et al. (2002) used 3 different microwave polymerization techniques (G1: 3 min at 500 W; G2: 13 min at 90 W with the flask in a vertical position and then with the flask positioned horizontally for 90 s at 500 W; G3: 3 min at 320 W, 4 min at 0 W, and 3 min at 720 W) and 1 long cycle of water bath polymerization as a control (G4: 9h at 74°C).

To evaluate OVDs, a digital caliper was used in most studies to measure the distance between the maxillary and mandibular elements for each pair of complete-arch prostheses, except for Nelson et al. who used a Starrett measuring device attached to a rigid surveyor. Slaviero et al. used a digital pachymeter that measures the distances before and after denture polymerization.

Changes in tooth position were evaluated in only one study through a digital pachymeter that measured the horizontal distances in specific points over six follow-up visits. Occlusal contacts were recorded in only one study and were performed using an articulation paper between maxillary and mandibular arches.

The results of the study quality assessment are summarized in Table 1. On the JBI scale, all studies had a low risk of bias.

Table 2. Characteristics of included studies in this systematic review (n = 5).

Lima et al., 2018

Type of Study	In vitro
Sample Size	40 complete-arch prostheses divided on 4 groups (n=10)
Polymerization cycle	MW1 – acrylic resin cured by one microwave cycle
Evaluation of OVD	Digital Caliper
Conclusions	The conventional acrylic resin polymerized using two curing cycles in a water bath led to less difference in OVD

Silvia-Concilio et al., 2012

Type of Study	In vitro
Sample Size	40 pairs divided on 4 groups
Polymerization cycle	Microwave: 20 min at 180 W / 5 min at 540 W and one long water bath cycle (9h at 73°C)
Evaluation of OVD	Digital Caliper
Conclusions	Both investing and heating methods resulted in an increase in OVD after processing. The prostheses invested in bimixalay

Slaviero et al., 2011

Type of Study	In vitro
Sample Size	64 specimens divided on 2 groups:
Polymerization cycle	Microwave: Power 500W for 2min
Evaluation of OVD	Microwave: Water 500W for 3min
Conclusions	There was no statistically significant difference between the conventional polymerization method and the polymerization method by microwave, related to the stability of occlusal vertical dimension and horizontal positioning of artificial teeth on the specimens evaluated

BP= before polymerization AF= after polymerization MD= Mean difference NR = not related
In the meta-analysis comparing water bath and microwave methods using a random effects model, no statistically significant difference was found between the two techniques ($p = 0.99$; $MD: -0.00; CI = -0.26$ to 0.26). Heterogeneity among the studies was high ($X^2 = 145.3; p < 0.0001; I^2 = 90\%$), demonstrating methodological differences among the studies. (Figures 2 and 3).

DISCUSSION

The meta-analysis revealed no statistically significant difference between the water bath and microwave techniques. Both microwave and water bath polymerization techniques can be used without significant clinical changes in OVDs. Both processing methods used in compliance with polymerization time, temperature, and potency protocols promote an adequate conversion of monomers to polymers, generating a resin with favorable and stable physical characteristics. Acrylic resin caused by cooling, and the complex system of concentrating and releasing stress, promoting distortion in the base. Despite the close relationship between the OVD and tooth movement, occlusal contacts were undervalued in the studies analyzed: only 2 authors evaluated this factor.

In laboratory steps in manufacturing complete dentures are considered clinically significant, worsening mainly in patients with bimaxillary total prosthesis, and it is advantageous to reassemble these prostheses regardless of the polymerization cycle used, polymerization contraction, change in the physical state of the acrylic resin caused by cooling, and the complex system of concentrating and releasing stress, promoting distortion in the base. Despite the close relationship between the OVD and tooth movement, occlusal contacts were undervalued in the studies analyzed: only 2 authors evaluated this factor.
cycle used. Thus, premature occlusal contacts can be eliminated, thereby avoiding undesirable occlusal forces acting on the alveolar ridge, leading to early bone resorption. Clinically, changes in OVDs from 3.4 to 4.5 mm can lead to speech difficulties and muscle discomfort in patients, but these issues tend to decrease after 1 to 2 weeks. A recent literature review noted that there is no evidence that permanent changes in OVDs produce long-term temporomandibular disorder symptoms.

However, there is no consensus yet, severe changes in the clinical parameters of OVDs should be avoided, especially when the change is not controlled, but due to prosthesis handling and processing methods.

Severe changes in OVDs directly influence the final quality of the total prosthesis, as this measure determines the adequate and satisfactory restoration of the stomatognathic system and phonation, chewing, and swallowing functions. Phonation difficulties, pain and tenderness in the alveolar rims, deficiencies in chewing ability, difficulties in swallowing, and tension in the facial muscles are some of the clinical inconveniences a patient may experience with an increased OVD.

A decreased OVD can also lead to negative consequences such as angular chelitis, disabling of the prosthesis during speech and chewing, and aesthetic impairment in the patient. In the studies evaluated, only one author provided data on OVD measurements before and after polymerization. The other authors provided only means and standard deviations of values related to OVDs and did not detail the data before and after polymerization, precluding the true interpretation of the increase or decrease of the OVD.

According to Anusavice et al., a slow cooling process after muffle processing is recommended to avoid high residual stress, thus generating different thermal expansions between the cast mold and the prosthesis support. This residual stress is one of the factors that can promote large distortions in OVDs and dental position. However, the studies included in this systematic review did not provide information about the cooling method of the prostheses after processing.

Nelson et al. observed greater changes in OVDs in microwave-polymerized dentures than water bath-polymerized dentures, but these dimensional changes were less than 1 mm. When all precautions are taken during prosthesis processing, vertical changes up to 0.50 mm are considered technically and clinically acceptable. Minor changes can be corrected by occlusal adjustment so that when adjusted correctly, a greater balance of complete dentures in the oral cavity is obtained. This provides patients with an adequate OVD, less residual alveolar crest resorption due to better occlusal force distribution, and, consequently, greater patient comfort.

Silva-Concilio et al. observed that the processing of total prostheses separately in monomaxillary muffles using the microwave technique may have an impact on the increase in OVD, suggesting that abrupt heating from microwave energy may significantly impair the outcome. The authors also point out that while the use of microwave energy has produced contrasting results, the method offers the advantage of saving time and energy in efficient and clean processing compared to conventional water baths. In addition, microwave heating is able to polymerize resin quickly and efficiently, keeping all mechanical properties within the recommendations of the American Dental Association (ADA).

Peyton states that the muffle should be left at rest for at least one hour before polymerization and after pressing so that the resinous mass can penetrate all points of the mold, thus decreasing internal stress during the initial stage and generating smaller dimensional distortions. In the studies included in this systematic review, no data were provided on post-processing time and subsequent polymerization of acrylic resins.

Gettleman et al. suggested that water in the plaster controls the rate of heating during microwave curing, and when the plaster becomes desiccated it may cause acrylic resin contraction and stress at the base of the prosthesis. The polymerization of the acrylic resin by a conventional water bath cycle induces minor changes and more uniform behavior of the acrylic resin in tooth movement in the face of a gradual temperature increase, decreasing influence from the plaster.

The studies included in this systematic review used different instruments to measure dimensional changes in OVDs, which may lead to minor discrepancies inherent in the precision and accuracy of each instrument. The use of standardized instruments is advantageous to avoid variations in measurement and reduce heterogeneity between studies.

The meta-analysis showed high heterogeneity among the studies included in this review. Therefore, a global standardization of laboratory studies using indices, evaluation parameters, measurement instruments, and similar methodologies is required. It is essential that studies describe information, measures, and methodologies in detail so that data can be extracted and interpreted clearly. With the development of computer-aided design and manufacturing (CAD/CAM) technology to manufacture full milled prostheses and resin injection systems, further studies are needed to...
evaluate the influence of this technology on OVDs, since the procedures for obtaining vertical occlusion and transfer dimensions of the maxillomandibular relationship are like the procedures performed in conventional methods.

CONCLUSION

The current meta-analysis revealed no statistically significant difference between water bath and microwave techniques. Both techniques can be used to polymerization of complete dentures without significant changes in OVDs.

REFERENCES

22. Rizzatti-Barbosa CM, Ribeiro-Dasilva MC. Influence of double flask investing and microwave heating on the superficial porosity,

CONFLICTS OF INTERESTS
The authors declare no conflicts of interests.

CORRESPONDING AUTHOR
Eduardo Piza Pellizzer
Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) – Araçatuba Dental School, Department of Dental Materials and Prosthodontics, 16015-050 Araçatuba - SP, Brazil
e-mail: ed.pl@uol.com.br

Received 05/06/2023
Accepted 21/06/2023