Updates on Glass Ionomer Cements: Literature Review and Clinical Case

Authors

  • Bruna Letícia Faniela Matarucco de Oliveira Graduação em Odontologia, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia de Araçatuba, 16015-050 Araçatuba- SP, Brasil https://orcid.org/0009-0007-3986-0410
  • Caio César Pavani Professor Assistente Doutor, Departamento de Odontologia Preventiva e Restauradora, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia de Araçatuba 16015-050 Araçatuba- SP, Brasil https://orcid.org/0000-0002-8682-0557
  • Isís Almeida Endo Hoshino Doutora em Odontologia, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia de Araçatuba 16015-050 Araçatuba- SP, Brasil https://orcid.org/0000-0001-8570-0425
  • Bruna Perazza Mestranda, Programa de Pós-Graduação em Odontologia, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia de Araçatuba 16015-050 Araçatuba- SP, Brasil https://orcid.org/0009-0009-1890-6453
  • Anderson Catelan Professor Assistente Doutor, Departamento de Odontologia Preventiva e Restauradora, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia de Araçatuba 16015-050 Araçatuba- SP, Brasil https://orcid.org/0000-0002-5916-8655
  • Ticiane Cestari Fagundes Professora Associada Doutora, Departamento de Odontologia Preventiva e Restauradora, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia de Araçatuba 16015-050 Araçatuba- SP, Brasil https://orcid.org/0000-0002-3418-0498

DOI:

https://doi.org/10.21270/archi.v14i5.6584

Keywords:

Case Report, Glass Ionomer Cement, Glass Hybrid Cement, Literature Review

Abstract

Glass ionomer cement (GIC) is a material resulting from the combination of polymeric acids associated with inorganic glass powder. Since its introduction in the mid-70s by Wilson and Kent, there have been many modifications in search of improvements in its composition and properties. GIC is widely used in several areas of Dentistry, and its success is mainly due to the release of fluoride and its biocompatibility, which configures the beneficial character intrinsically linked to the preventive precepts and minimally invasive techniques of restorative dentistry. Based on their physical-chemical nature and composition, they are classified into conventional cements, cements reinforced by metal particles, resin-modified cements, high viscosity cements and even hybrid glass cements. The purpose of this work is to review the conceptual literature related to GIC, addressing current research trends, with a focus on hybrid glass technology, guiding dentists in their clinical practice. As well as describing a clinical case report demonstrating the use of hybrid glass cement, in which a 19-year-old male patient came to the Araçatuba School of Dentistry dissatisfied with the aesthetics of his smile and with dental caries located in his maxillary and mandibular teeth. Initially, the patient received instructions on oral hygiene and dietary adjustment, with the aim of promoting changes in habits that would contribute to the long-term effectiveness of the treatment. Subsequently, the carious lesions were removed with dentine spoons and curettes. The cavities were then cleaned and etched. Glass hybrid restorative material (Equia Forte, GC, Tokyo, Japan) was used to restore the caries lesions. Once all the caries lesions had been removed and restored, the patient was monitored monthly and preventive oral hygiene and diet guidelines were constantly resumed. It is concluded that GICs are highly relevant materials in clinical practice, considering their superior physicochemical properties, such as the ability to recharge and the continuous release of fluoride in the regions adjacent to their application.

Downloads

Download data is not yet available.

References

1. AlKahtani RN. The implications and applications of nanotechnology in dentistry: A review. Saudi Dent J. 2018;30(2):107-116.

2. Baeshen HA, Rangmar S, Kjellberg H, Birkhed D. Dental Caries and Risk Factors in Swedish Adolescents about to Start Orthodontic Treatment with Fixed Appliances. J Contemp Dent Pract. 2019;20(5):537-542.

3. Balkaya H, Arslan S. A Two-year Clinical Comparison of Three Different Restorative Materials in Class II Cavities. Oper Dent. 2020;45(1):E32-E42.

4. Berzins DW, Abey S, Costache MC, Wilkie CA, Roberts HW. Resin-modified glass-ionomer setting reaction competition. J Dent Res 2010;89(1):82-6.

5. BinSaleh S, Sulimany AM, Aldowsari MK, Al-Homaidhi M, Alkuait N, Almashham L, Alghamdi N. Evaluation of the shear bond strength of a tricalcium silicate-based material to four self-adhering glass ionomer materials: an in vitro study. Front Pediatr 2023;11:1303005.

6. Boaventura JMC, Roberto AR, Becci ACO, Ribeiro BCI, Oliveira MRB, Andrade MF. Importância da biocompatibilidade de novos materiais: revisão para o cimento de ionômero de vidro. Rev odontol UNICID. 2017;24(1):42.

7. Boing TF, de Geus JL, Wambier LM, Loguercio AD, Reis A, Gomes OMM. Are Glass-Ionomer Cement Restorations in Cervical Lesions More Long-Lasting than Resin-based Composite Resins? A Systematic Review and Meta-Analysis. J Adhes Dent 2018;20(5):435-452.

8. Bonifácio CC, Werner A, Kleverlaan CJ. Coating glass-ionomer cements with a nanofilled resin. Acta odontol Scand. 2012; 70(6):471-77.

9. BRASIL. Ministério da Saúde. Secretaria de Saúde Indígena. Departamento de Atenção Primária à Saúde Indígena. Tratamento Restaurador Atraumático (ART) [recurso eletrônico]. Brasília: Ministério da Saúde, 2024. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/tratamentorestauradoratraumatico.pdf.

10. Cattani-lorente MA, Godin C, Meyer JM. Early strength of glass ionomer cements. Dental materials: official publication of the Academy of Dental Materials 1993; v. 9, n. 1, p. 57–62.

11. Chaussain C, Opsahl Vital S, Viallon V, Vermelin L, Haignere C, Sixou M, Lasfargues JJ. Interest in a new test for caries risk in adolescents undergoing orthodontic treatment. Clin Oral Investig 2010;14(2):177-85.

12. Coelho CS, Fedechen MC,Volpini RMC, Pedron IG, Kubo H, Friggi MNP,Shitsuka C. Evolução da técnica odontológica do tratamento restaurador atraumático. Res Soc Dev. 2020;9(3):e74932439.

13. Contreras SCM. Restaurações diretas com materiais bioativos: observações clínicas, in vitro e revisão sistemática. São José dos Campos: [s.n.], 2022

14. Corralo DJ, Maltz M. Clinical and ultrastructural effects of different liners/restorative materials on deep carious dentin: a randomized clinical trial. Caries Res. 2013;47(3):243-50.

15. Dasgupta S, Saraswathi MV, Somayaji K, Pentapati KC, Shetty P. Comparative evaluation of fluoride release and recharge potential of novel and traditional fluoride-releasing restorative materials: An in vitrostudy. J Conserv Dent. 2018;21(6):622-626.

16. De Caluwé T, Vercruysse CW, Fraeyman S, Verbeeck RM. The influence of particle size and fluorine content of aluminosilicate glass on the glass ionomer cement properties. Dent Mater. 2014;30(9):1029-38.

17. de Gee AJ, van Duinen RN, Werner A, Davidson CL. Early and long-term wear of conventional and resin-modified glass ionomers. J Dent Res. 1996;75(8):1613-9.

18. Demarco FF, Corrêa MB, Cenci MS, Moraes RR, Opdam NJ. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater .2012;28(1):87-101.

19. Dias AGA, Magno MB, Delbem ACB, Cunha RF, Maia LC, Pessan JP. Clinical performance of glass ionomer cement and composite resin in Class II restorations in primary teeth: A systematic review and meta-analysis. J Dent. 2018;73:1-13.

20. Diem VT, Tyas MJ, Ngo HC, Phuong LH, Khanh ND. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement. Clin Oral Investig. 2014;18(3):753-9.

21. Dornellas AP, Cavalcante KDT, Tedesco TK, Floriano I, Imparato JCP. Molar decíduo infraocluido: Relato de um caso restaurado com cimento ionômero de vidro encapsulado, um ano de acompanhamento. Acta Biom Brasiliensia 2018;9(2):124.

22. Elkassas D, Arafa A. Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. Nanomedicine. 2017;13(4):1543-1562.

23. EQUIA® FORTE. GC Brazil, [2024]. <https://gcbrazil.dental/producto/equia_forte>. Acesso em: 05 nov. 2024.

24. Fareed MA, Stamboulis A. Nanoclay addition to a conventional glass ionomer cements: Influence on physical properties. Eur J Dent. 2014;8(4):456-463

25. Ferreira MS, Pereira NGA, Silva CM, Concilio LRS, Silva AMSL. Avaliação dos agentes protetores para restaurações com cimento de ionômero de vidro. Clín Pesq Odontol UNITAU. 2018;9(1):25.

26. Francois P, Fouquet V, Attal JP, Dursun E. Commercially Available Fluoride-Releasing Restorative Materials: A Review and a Proposal for Classification. Materials (Basel). 2020;13(10):2313.

27. Frankenberger R, Garcia-godoy F, Krämer N. Clinical Performance of Viscous Glass Ionomer Cement in Posterior Cavities over Two Years. Int J Dent. 2009;2009:781462.

28. Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LE, Martin AA, Ambrosano G, Giannini M. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent Mater. 2015;31(12):1542-51.

29. Fúcio SB, Paula AB, Sardi JC, Duque C, Correr-Sobrinho L, Puppin-Rontani RM. Streptococcus Mutans Biofilm Influences on the Antimicrobial Properties of Glass Ionomer Cements. Braz Dent J. 2016;27(6):681-687.

30. Fujimoto Y, Iwasa M, Murayama R, Miyazaki M, Nagafuji A, Nakatsuka T. Detection of ions released from S-PRG fillers and their modulation effect. Dent Mater J. 2010;29(4):392-7.

31. G Nigam A, Jaiswal J, Murthy R, Pandey R. Estimation of fluoride release from various dental materials in different media-an in vitro study. Int J Clin Pediatr Dent .2009;2(1):1-8.

32. Garbim JR, Saihara CS, Olegário IC, Hesse D, Araujo MP, Bonifácio CC, Braga MM, Raggio DP. 2-year survival and cost analysis of occlusoproximal ART restorations using encapsulated glass ionomer cement in primary molars: a randomized controlled trial. BMC Oral Health. 2024;24(1):647.

33. GC EUROPE N.V. EQUIA Forte HT: guia abrangente. Leuven, Bélgica: GC Europe N.V; 2020. Disponível em: https://www.gc.dental/europe/sites/europe.gc.dental/files/products/downloads/equiafo rteht/manual/MAN_Comprehensive_Guide_EQUIA_Forte_HT.pdf.

34. Gjorgievska E, Van Tendeloo G, Nicholson JW, Coleman NJ, Slipper IJ, Booth S. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microsc Microanal. 2015;21(2):392-406.

35. Guggenberger R, May R, Stefan KP. New trends in glass-ionomer chemistry. Biomaterials 1998; v. 19, n. 6, p. 479–483.

36. Guimarães PCF, Laurindo TC, Irrazabal L, Martins VM, Silva CF. Proteção do complexo dentino-pulpar: capeamento pulpar indireto com ionômero de vidro (relato de caso). Rev Saúde Multidisciplinar - FAMA Mineiros/GO 2017;4(1):217-226.

37. Gurgan S, Kutuk ZB, Ozturk C, Soleimani R, Cakir FY. Clinical Performance of a Glass Hybrid Restorative in Extended Size Class II Cavities. Oper Dent. 2020;45(3):243-254.

38. Hesse D, Bonifácio CC, Guglielmi Cde A, Bönecker M, van Amerongen WE, Raggio DP. Bilayer technique and nano-filled coating increase success of approximal ART restorations: a randomized clinical trial. Int J Paediatr Dent. 2016;26(3):231-9.

39. Hung CY, Yu JH, Su LW, Uan JY, Chen YC, Lin DJ. Shear Bonding Strength and Thermal Cycling Effect of Fluoride Releasable/Rechargeable Orthodontic Adhesive Resins Containing LiAl-F Layered Double Hydroxide (LDH) Filler. Materials (Basel). 2019;12(19):3204.

40. Hurrell-Gillingham K, Reaney IM, Miller CA, Crawford A, Hatton PV. Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass-ionomer cements. Biomaterials. 2003;24(18):3153-60.

41. Imataki R, Shinonaga Y, Nishimura T, Abe Y, Arita K. Mechanical and Functional Properties of a Novel Apatite-Ionomer Cement for Prevention and Remineralization of Dental Caries. Materials (Basel). 2019;12(23):3998.

42. ISO 9917-1:2007. Odontologia — Cimentos à base de água — Parte 1: Cimentos ácido-base em pó/líquido. ISO;2003.

43. Joshi G, Heiss M. Glass-Hybrid Technology for Long-Term Restorations. Compend Contin Educ Dent. 2021;42(Suppl 1):2-5.

44. Junior LVB, Barros AKC, Silva LHV, Gaia LGTM, Binas IWV, Mendonca ICG. Cimento de ionômero de vidro: revisão de literatura / Glass ionomer cement: literature review. Braz J Health Rev. 2022;5(2):6893–6902.

45. Khoroushi M, Keshani F. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer. Dent Res J (Isfahan). 2013;10(4):411-20.

46. Klee JE, Renn C, Elsner O. Development of Novel Polymer Technology for a New Class of Restorative Dental Materials. J Adhes Dent. 2020;22(1):35-45.

47. Koc Vural U, Meral E, Ergin E, Gürgan S. Twenty-four-month clinical performance of a glass hybrid restorative in non-carious cervical lesions of patients with bruxism: a split-mouth, randomized clinical trial. Clin Oral Investig 2020;24(3):1229-1238.

48. Kramer PF, Pires LAG, Tovo MF, Kersting TC, Guerra S. Grau de infiltração marginal de duas técnicas restauradoras com cimento de ionômero de vidro em molares decíduos: estudo comparativo " in vitro. J appl oral sci. 2003;11(2):114–119.

49. Kumari PD, Khijmatgar S, Chowdhury A, Lynch E, Chowdhury CR. Factors influencing fluoride release in atraumatic restorative treatment (ART) materials: A review. J Oral Biol Craniofac Res. 2019;9(4):315-320.

50. Kuper NK, Opdam NJ, Ruben JL, de Soet JJ, Cenci MS, Bronkhorst EM, Huysmans MC. Gap size and wall lesion development next to composite. J Dent Res. 2014;93(7 Suppl):108S-113S.

51. Kutuk ZB, Ozturk C, Cakir FY, Gurgan S. Mechanical performance of a newly developed glass hybrid restorative in the restoration of large MO Class 2 cavities. Niger J Clin Pract. 2019;22(6):833-841.

52. Lohbauer U, Walker J, Nikolaenko S, Werner J, Clare A, Petschelt A, Greil P. Reactive fibre reinforced glass ionomer cements. Biomaterials. 2003;24(17):2901-7.

53. Machado KDDS, Reges RV, Botelho TL, Santos FG. Efeito da Manipulação e Proporção Pó e Líquido do Cimento de Ionômero de Vidro Reforçado com Zinco na Rugosidade Superficial Parte 1. Rev Ciênc Odontol. 2019;3(1):20–24.

54. Magne P, Silva S, Andrada Md, Maia H. Fatigue resistance and crack propensity of novel "super-closed" sandwich composite resin restorations in large MOD defects. Int J Esthet Dent 2016;11(1):82-97.

55. Massara MLA, Alves JB, Brandão PRG. Atraumatic restorative treatment: clinical, ultrastructural and chemical analysis. Caries Res. 2002;36(6):430-6.

56. Mathur VP, Dhillon JK. Dental Caries: A Disease Which Needs Attention. Indian J Pediatr. 2018;85(3):202-206.

57. Matsuya S, Maeda T, Ohta M. IR and NMR analyses of hardening and maturation of glass-ionomer cement. J Dent Res. 1996;75(12):1920-7.

58. Mclean JW, Nicholson JW, Wilson AD. Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence int. 1994;25(9):587–589.

59. Menezes-Silva R, Velasco SRM, Bresciani E, Bastos RDS, Navarro MFL. A prospective and randomized clinical trial evaluating the effectiveness of ART restorations with high-viscosity glass-ionomer cement versus conventional restorations with resin composite in Class II cavities of permanent teeth: two-year follow-up. J Appl Oral Sci. 2021;29:e20200609.

60. Mesquita DCM, Reges RV, Peres LEC, Pereira CM, Alves DRS, Carvalho RM, Santos FG. Perfilometria dimensional do cimento de ionômero de vidro frente aos diferentes ph e tempos de armazenamento. Rev Ciênc Odontol. 2020;4(2):44–50.

61. Mickenautsch S. Mickenautsch S. Are high-viscosity glass-ionomer cements inferior to silver amalgam as restorative materials for permanent posterior teeth? A Bayesian analysis. BMC Oral Health. 2015;15(1):118.

62. Miletić I, Baraba A, Basso M, Pulcini MG, Marković D, Perić T, Ozkaya CA, Turkun LS. Clinical performance of a glass-hybrid system in comparison with a resin composite in two-surface class II restorations: a 5-year randomised multi-centre study. Clin Oral Investig. 2024;28(1):104.

63. Miletić I, Baraba A, Krmek SJ, Perić T, Marković D, Basso M, Ozkaya CA, Kemaloglu H, Turkun LS. Clinical performance of a glass-hybrid system in comparison with a resin composite in two-surface class II restorations: a 5-year randomised multi-centre study. Clin Oral Investig. 2024;28(1):104.

64. Mitra SB, Kedrowski BL. Long-term mechanical properties of glass ionomers. Dent Mater. 1994;10(2):78-82.

65. Mitsuhashi A, Hanaoka K, Teranaka T. Fracture toughness of resin-modified glass ionomer restorative materials: effect of powder/liquid ratio and powder particle size reduction on fracture toughness. Dent Mater. 2003;19(8):747-57.

66. Molina GF, Ulloque MJ, Mazzola I, Mulder J, Frencken J. Randomized Controlled Trial of Class II ART High-viscosity Glass-ionomer Cement and Conventional Resin-composite restorations in Permanent Dentition: Two-year Survival. J Adhes Dent. 2020;22(6):555-565.

67. Momoi Y, Hirosaki K, Kohno A, McCabe JF. Flexural properties of resin-modified "hybrid" glass-ionomers in comparison with conventional acid-base glass-ionomers. Dent Mater J. 1995;14(2):109-19.

68. Montagner AF, Opdam NJ, Ruben JL, Bronkhorst EM, Cenci MS, Huysmans MC. Behavior of failed bonded interfaces under in vitro cariogenic challenge. Dent Mater. 2016;32(5):668-75.

69. Moshaverinia M, Navas A, Jahedmanesh N, Shah KC, Moshaverinia A, Ansari S. Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. J Prosthet Dent. 2019;122(2):154-159.

70. Moura MS, Sousa GP, Brito MHSF, Silva MCC, Lima MDM, Moura LFAD, Lima CCB. Does low-cost GIC have the same survival rate as high-viscosity GIC in atraumatic restorative treatments? A RCT. Braz Oral Res. 2020;33:e125.

71. Mousavinasab SM, Meyers I. Fluoride release by glass ionomer cements, compomer and giomer. Dental research journal 2009; 6(2):75–81.

72. Muniz AB, Bessa ERL, Holanda MAR, Damasceno AGRL, Júnior PRPS, Melo ECS, Macedo SB, Costa ACS, Rezende MM, Beiruth CP. Cimento de ionômero de vidro em odontopediatria: revisão narrativa. Rev Acervo Saúde 2020;12(10):e3853.

73. Mustafa R, Alshali RZ, Silikas N. The effect of desiccation on water sorption, solubility and hygroscopic volumetric expansion of dentine replacement materials. Dent Mater. 2018;34(8):e205-e213.

74. Naguib G, Maghrabi AA, Mira AI, Mously HA, Hajjaj M, Hamed MT. Influence of inorganic nanoparticles on dental materials' mechanical properties. A narrative review. BMC Oral Health 2023;23(1):897.

75. Najeeb S, Khurshid Z, Zafar MS, Khan AS, Zohaib S, Martí JM, Sauro S, Matinlinna JP, Rehman IU. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics. Int J Mol Sci.2016;17(7):1134.

76. Navarro MFL, Bresciani E, Barata TJE, Fagundes TC. Tratamento restaurador atraumático (ART) e o programa de saúde da família. Bio Odonto. 2004;2(4):9-11.

77. Navarro MFL, Pascotto RC, Borges AFS, Soares CJ, Raggio DP, Rios D, et al. Consenso sobre os limites dos cimentos de ionômero de vidro para indicações restauradoras. Gestão e políticas públicas em Odontologia, 2022.

78. Neves AB, Bergstrom TG, Fonseca-Gonçalves A, Dos Santos TMP, Lopes RT, de Almeida Neves A. Mineral density changes in bovine carious dentin after treatment with bioactive dental cements: a comparative micro-CT study. Clin Oral Investig 2019;23(4):1865-1870.

79. Nicholson JW, Sidhu SK, Czarnecka B. Enhancing the mechanical properties of glass-ionomer dental cements: A review. Materials 2020;13, n. 11, p. 2510.

80. Nicholson JW. Chemistry of glass-ionomer cements: a review. Biomaterials. 1998;19(6):485-494.

81. Olegário IC, Pacheco AL, de Araújo MP, Ladewig NM, Bonifácio CC, Imparato JC, Raggio DP. Low-cost GICs reduce survival rate in occlusal ART restorations in primary molars after one year: A RCT. J Dent. 2017;57:45-50.

82. Oliveira GL, Carvalho CN, Carvalho EM, Bauer J, Leal AMA. The Influence of Mixing Methods on the Compressive Strength and Fluoride Release of Conventional and Resin-Modified Glass Ionomer Cements. Int J Dent. 2019;2019:6834931.

83. Oliveira LC, Dos Santos PH, Ramos FSS, Moda MD, Briso ALF, Fagundes TC. Wear, roughness and microhardness analyses of single increment restorative materials submitted to different challenges in vitro. Eur Arch Paediatr Dent. 2021;22(2):247-255

84. Pallesen U, van Dijken JW, Halken J, Hallonsten AL, Höigaard R. A prospective 8-year follow-up of posterior resin composite restorations in permanent teeth of children and adolescents in Public Dental Health Service: reasons for replacement. Clin Oral Investig. 2014;18(3):819-27.

85. Paradella TC. Cimentos de ionômero de vidro na odontologia moderna. Rev Odontol UNESP. 2004;44:157–161.

86. Pássaro AL, Olegário IC, Laux CM, Oliveira RC, Tedesco TK, Raggio DP. Giomer composite compared to glass ionomer in occlusoproximal ART restorations of primary molars: 24-month RCT. Aust Dent J. 2022;67(2):148-158.

87. Pearson GJ, Atkinson AS. Long-term flexural strength of glass ionomer cements. Biomaterials. 1991;12(7):658-60.

88. Perondi PR, Oliveira PHC, Cassoni A, Reais AF, Rodrigues JA. Compomers and glass ionomers: bond strength to dentin and mechanical properties. Am J Dent. 1996;9(6):259-63.

89. Peutzfeldt A. Compomers and glass ionomers: bond strength to dentin and mechanical properties. Am J Dent. 1996;9(6):259-63.

90. Pires RA, Nunes TG, Abrahams I, Hawkes GE. The role of aluminium and silicon in the setting chemistry of glass ionomer cements. J Mater Sci Mater Med. 2008;19(4):1687-92.

91. Pokrowiecki R, Pałka K, Mielczarek A. Nanomaterials in dentistry: a cornerstone or a black box? Nanomedicine (Lond). 2018;13(6):639-667.

92. Prabhakar AR, Sekhar VR, Kurthukoti AJ. Leaching of ions from materials used in alternative restorative technique under neutral and acidic conditions: a comparative evaluation. J Clin Pediatr Dent. 2009;34(2):125-30.

93. Prentice LH, Tyas MJ, Burrow MF. The effect of particle size distribution on an experimental glass-ionomer cement. Dent Mater. 2005;21(6):505-10.

94. Ranjani MS, Kavitha M, Venkatesh S. Comparative Evaluation of Osteogenic Potential of Conventional Glass-ionomer Cement with Chitosan-modified Glass-ionomer and Bioactive Glass-modified Glass-ionomer Cement An In vitro Study. Contemp Clin Dent. 2021;12(1):32-36.

95. Rekow ED, Bayne SC, Carvalho RM, Steele JG. What constitutes an ideal dental restorative material? Adv Dent Res. 2013;25(1):18-23.

96. Roberts HW, Berzins DW. Early reaction kinetics of contemporary glass-ionomer restorative materials. J Adhes Dent. 2015;17(1):67-75.

97. Rożniatowski P, Korporowicz E, Gozdowski D, Olczak-Kowalczyk D. Clinical study on resin composite and glass ionomer materials in II class restorations in permanent teeth. J Clin Exp Dent. 2021;13(2):e165-e171.

98. Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dent Mater. 2010;26(5):471-82.

99. Sidhu SK, Nicholson JW. A Review of Glass-Ionomer Cements for Clinical Dentistry. J Funct Biomater. 2016;7(3):16.

100. Sidhu SK. Glass-ionomer cement restorative materials: a sticky subject? Aust Dent J. 2011;56 Suppl 1:23-30.

101. Silva BAC, Silva EBV, Moraes RA, Santos RS, Soares AF, Vieira IM. Novas formulações e perspectivas futuras dos cimentos de ionômero de vidro: Uma revisão narrativa. Res Soc Dev. 2024;13(11):e67131147401.

102. Silva DOC, Silva IM, Rocha AO, Anjos LM, Lima TO, et al. Cimento de ionômero de vidro e sua aplicabilidade na Odontologia: Uma revisão narrativa com ênfase em suas propriedades. Res Soc Dev. 2021;10(5):e20110514884.

103. Sonarkar S, Purba R. Bioactive materials in conservative dentistry. Int J Contemp Dent Med Rev. 2015:1–4.

104. Souza MRP, Souza CLS, Lima TM. O uso dos diferentes tipos de cimentos de ionômero de vidro restauradores utilizados na prática clínica em cavidades classe v: revisão de literatura/The use of diferente types of restorative glass ionomer cements used in clinical practice in class V cavities: literature review. BJD. 2020;6(12):97628–97641.

105. Spezzia S. Cimento de ionômero de vidro: revisão de literatura. J Oral Investig. 2017;6(2):74-8.

106. Svanberg M, Mjör IA, Orstavik D. Mutans streptococci in plaque from margins of amalgam, composite, and glass-ionomer restorations. J Dent Res. 1990;69(3):861-4.

107. Swetha DL, Vinay C, Uloopi KS, RojaRamya KS, Chandrasekhar R. Antibacterial and Mechanical Properties of Pit and Fissure Sealants Containing Zinc Oxide and Calcium Fluoride Nanoparticles. Contemp Clin Dent. 2019;10(3):477-482.

108. Tagliaferro EPS, Pardi V, Ambrosano GMB, Meneghim MC, Paschoal MAB, Cordeiro RCL, Pereira AC. Influence of caries risk on the retention of a resin- modified glass ionomer used as occlusal sealant: a clinical trial. Rev Odontol UNESP. 2017;46(4):208–213.

109. Uyumaz FÜ, Abakli inci M, Özer H. Could bulk fill glass hybrid restorative materials replace composite resins in treating permanent teeth? A randomized controlled clinical trial. J Esthet Restor Dent. 2024;36(5):702-709.

110. Van Duinen RN, Davidson CL, De Gee AJ, Feilzer AJ. In situ transformation of glass-ionomer into an enamel-like material. Am J Dent. 2004;17(4):223-7.

111. Van Gemert-Schriks MC, van Amerongen WE, ten Cate JM, Aartman IH. Three-year survival of single- and two-surface ART restorations in a high-caries child population. Clin Oral Investig. 2007;11(4):337-43.

112. Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater. 2014;30(1):50-61.

113. Wilson AD, Hill RG, Warrens CP, Lewis BG. The influence of polyacid molecular weight on some properties of glass-ionomer cements. J Dent Res. 1989;68(2):89-94.

114. Wilson AD, Kent BE. Wilson AD, Kent BE. A new translucent cement for dentistry. The glass ionomer cement. Br Dent J. 1972;132(4):133-5.

115. Wilson N, Lynch C. Amalgam and minimal intervention: an incompatible relationship. Prim Dent J. 2013;2(4):18.

116. Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent. 2008;36(6):450-5.

117. Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater. 2000;16(2):129-38.

118. Yap AUJ, Pek YS, Cheang P. Physico-mechanical properties of a fast-set highly viscous GIC restorative. J Oral Rehabil. 2003;30(1):1-8.

119. Young AM, Rafeeka SA, Howlett JA. FTIR investigation of monomer polymerisation and polyacid neutralisation kinetics and mechanisms in various aesthetic dental restorative materials. Biomaterials. 2004;25(5):823–833.

120. Zanata RL, Fagundes TC, Freitas MC, Lauris JR, Navarro MF. Ten-year survival of ART restorations in permanent posterior teeth. Clin Oral Investig. 2011;15(2):265-71.

121. Zoergiebel J, Ilie N. Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clin Oral Investig. 2013;17(2):619-26.

Published

2025-05-31

How to Cite

Oliveira, B. L. F. M. de, Pavani, C. C., Hoshino, I. A. E., Perazza, B., Catelan, A., & Fagundes, T. C. (2025). Updates on Glass Ionomer Cements: Literature Review and Clinical Case. ARCHIVES OF HEALTH INVESTIGATION, 14(5), 1526–1541. https://doi.org/10.21270/archi.v14i5.6584

Issue

Section

Original Articles