Materiais Sintéticos e Impressão 3D na Regeneração Óssea Alveolar

Autores

  • Débora de Paula Neves Mestranda do Programa de Mestrado em Clínica Odontológica, Universidade do Oeste Paulista – UNOESTE, 19050-920 Presidente Prudente - SP – Brasil https://orcid.org/0000-0003-2480-9392
  • Carolina dos Santos Santinoni Docente do Programa de Mestrado em Clínica Odontológica, Universidade do Oeste Paulista – UNOESTE, 19050-920 Presidente Prudente - SP – Brasil https://orcid.org/0000-0001-5153-2419
  • Graziela Garrido Mori Docente do Programa de Mestrado em Clínica Odontológica, Universidade do Oeste Paulista – UNOESTE, 19050-920 Presidente Prudente - SP – Brasil

DOI:

https://doi.org/10.21270/archi.v11i2.5559

Palavras-chave:

Materiais Biocompatíveis, Regeneração Óssea, Bioimpressão, Polímeros, Engenharia Tecidual

Resumo

Introdução: Na odontologia, a perda do osso alveolar é uma das principais características da doença periodontal. A busca pelo reparo e/ou regeneração deste tecido é constante. Atualmente com o desenvolvimento de tecnologias como a impressão 3D, scaffolds são confeccionados para promover a regeneração óssea alveolar. Objetivo: Esta revisão teve como objetivo abordar a utilização de materiais sintéticos na confecção de scaffolds e na impressão 3D como alternativa para a regeneração do tecido ósseo alveolar. Revisão de Literatura: O uso e a capacidade dos materiais sintéticos para promover a regeneração óssea alveolar são evidentes na literatura; entretanto, a técnica, o tratamento e o biomaterial ideais para a regeneração óssea alveolar ainda não foram estabelecidos. Fosfato de cálcio, hidroxiapatita, ácido polilático (PLA) e ácido polilático-glicólico (PLGA) estão entre os biomateriais mais utilizados. Cada biomaterial possui suas propriedades que devem ser consideradas no momento da seleção, porém os melhores resultados têm sido obtidos pela combinação desses biomateriais. A impressão 3D permite a combinação precisa desses materiais para a confecção de scaffolds, proporcionando ambientes favoráveis ​​ao desenvolvimento dos tecidos promovendo a regeneração óssea alveolar. Considerações Finais: Os biomateriais sintéticos e o uso da impressão 3D apresentam resultados promissores, podendo ser considerados excelentes alternativas para a promoção da regeneração óssea alveolar.

Downloads

Não há dados estatísticos.

Referências

Albandar JM. Epidemiologia e fatores de risco das doenças periodontais. Dent Clin North Am. 2005;49:517-32.

Sowmya S, Mony U, Jayachandran P, Reshma S, Kumar RA, Arzate H et al. Tri-Layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv Healthc Mater. 2017;6:1601251.

Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res. 2017;21:9.

Iviglia G, Kargozar S, Baino F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J Funct Biomater. 2019;10(1):3.

Pilipchuk SP, Plonka AB, Monje A, Tau AD, Lanisdro A, Kang B et al. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater. 2015;31(4):317-38.

Mudda JA, Bajaj M. Stem cell therapy: A challenge to periodontist. Indian J. Dent. Res. 2011;22:132-39.

Lee MJ, Kim BO, Yu SJ. J Clinical evaluation of a biphasic calcium phosphate grafting material in the treatment of human periodontal intrabony defects. Periodontal Implant Sci. 2012;42(4):127-35.

Cortellini P, Tonetti MS. Focus on intrabony defects: guided tissue regeneration. Periodontol 2000. 2000;22:104-32.

Engler W., Ramfjord S., Hiniker J. Healing following simple gingivectomy. A tritiated thymidine radioautographic study. I. Epithelialization. J Periodontol. 1966;37:298-308

Bosshardt DD, Sculean A. Does periodontal tissue regeneration really work? Periodontol 2000. 2009;51:208-19.

Shue L, Yufeng Z, Mony U. Biomaterials for periodontal regeneration: a review of ceramics and polímeros. Biomatter. 2012;2(4):271-77.

Caton J, DeFuria E, Polson A, Nyman S. Periodontal regeneration via selective cell repopulation. J. Periodontol. 1987;58:546-52.

Nyman S, Gottlow J, Lindhe J, Karring T, Wennstrom J. New attachment formation by guided tissue regeneration. J. Periodontol Res. 1987;22:252-54.

Melcher A, McCulloch C, Cheong T, Nemeth E, Shiga A. Cells from bone synthesize cementum-like and bone-like tissue in vitro and may migrate into periodontal ligament in vivo. J. Periodontal Res. 1987;22:246-47.

Vieira S, Vial S, Reis RL, Oliveira JM. Nanoparticles for bone tissue. Biotechnol Prog. 2017;33:590-611.

Zhang Y, Sun H, Song X, Gu X, Sun C. Biomaterials for periodontal tissue regeneration. Rev Adv Mater Sci. 2015;40: 209-14.

Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D et al. Nanotechnology scaffolds for alveolar bone regeneration. Materials (Basel). 2020;13(1):201.

Carbone EJ, Tao Jiang T, Nelson C, Henry N, Lo KWH Small molecule delivery through nanofibrous scaffolds for musculoskeletal regenerative engineering. Nanomedicina. 2014;10:1681-99.

Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J. Zhang M, Yao K. Preparação e avaliação histológica de estruturas compostas de rede biomimética tridimensional hidroxiapatita/quitosana-gelatina. Biomaterials. 2002;23:3227-34.

Li G, Zhang T, Li M, Fu N, Fu Y, Ba K et al. Electrospun fibers for dental and craniofacial applications. Curr Stem Cell Res. 2014;9: 187-95.

Xynos I, Hukkanen M, Batten J, Buttery L, Hench L, Polak J. Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering. Calcif Tissue Int. 2000;67:321-29.

El-Ghannam AR. Advanced bioceramic composite for bone tissue engineering: Design principles and structure—Bioactivity relationship. J Biomed Mater Res Part A. 2004;69:490-501.

Kim HD, Valentini RF. Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro. J Biomed Mater Res. 2002;59:573-84.

Ebrahimi M, Botelho M, Lu W, Monmaturapoj N. Synthesis and characterization of biomimetic bioceramic nanoparticleswith optimized physicochemical properties for bone tissue engineering. J Biomed Mater Res A. 2019;27.

Kinoshita Y, Maeda H. Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. Sci World J. 2013;21:863157.

Gmeiner R, Deisinger U, Schönherr J, Lechner B, Detsch R, Boccaccini A et al. Additive manufacturing of bioactive glasses and silicate bioceramics. J Ceram Sci Technol. 2015;6:75-86.

Zeng JH, Liu SW, Xiong L, Qiu P, Ding LH, Xiong SL et al. Scaffolds for the repair of bone defects in clinical studies: a systematic review. J Orthop Surg Res. 2018;13(1):33.

Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1(4):245-60.

Saiz E, Zimmermann EA, Lee JS, Ulrike GK, Wegst UGK, Tomsia AP. Perspectives on the Role of Nanotechnology in Bone Tissue Engineering. Dent Mater. 2013;29:103-15.

Ferracane JL, Giannobile WV. Novel biomaterials and technologies for the dental, oral, and craniofacial structures. J Dent Res. 2014;93:1185-86.

Hosseinpour S, Ahsaie MG, Rad MR, Baghani M, Motamedian SR, Khojasteh A. Application of selected scaffolds for bone tissue engineering: a systematic review. Oral Maxillofac Surg. 2017;21:109-29.

Brekke JH, Toth JM. Principles of tissue engineering applied to programmable osteogenesis. J Biomed Mater Res. 1998. 43(4):380-98.

Yamamuro T. Bioceramics. In: Poitout DG (ed). Biomechanics and Biomaterials in Orthopedics. Springer: London, UK; 2004. pp. 22-3.

Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P. Bioceramics in endodontics - a review. J Istanb Univ Fac Dent. 2017;51:128-37.

Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27:1143-69.

Lauritano D, Limongelli L, Moreo G, Favia G, Carinci F. Nanomaterials for periodontal tissue engineering: chitosan-based scaffolds. a systematic review. Nanomaterials (Basel). 2020;10(4):605.

Baino F, Hamzehlou S, Kargozar S. Bioactive Glasses: Where are we and where are we going? J Funct Biomater. 2018;9(1):25.

Kargozar S, Hamzehlou S, Baino F. Potential of bioactive glasses for cardiac and pulmonary tissue engineering. Materiais 2017;10:1429.

Kargozar S, Baino F, Hamzehlou S, Hill RG, Mozafari M. Bioactive glasses: Sprouting angiogenesis in tissue engineering. Trends Biotechnol. 2018;36:430-44.

Baino F. Bioactive glasses – when glass science and technology meet regenerative. Ceram Int. 2018;44:14953-66.

Carvalho SM, Oliveira AA, Jardim CA, Melo C, Gomes DA, Leite M et al. Characterization and induction of cementoblast cell proliferation by bioactive glass nanoparticles. J Tissue Eng Regen Med. 2012;6:813-21.

Subbaiah R, Thomas B. Efficacy of a bioactive alloplast, in the treatment of human periodontal osseous defects-a clinical study. Med Oral Patol Oral Cir Bucal. 2011;16:e239-44.

Sohrabi K, Saraiya V, Laage TA, Harris M, Blieden M, Karimbux N. An evaluation of bioactive glass in the treatment of periodontal defects: a meta-analysis of randomized controlled clinical trials. J Periodontol. 2012;83: 453-64

Nevins ML, Camelo M, Nevins M, King CJ, Oringer RJ, Schenk RK et al. Human histologic evaluation of bioactive ceramic in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent. 2000;20:458-67.

Knapp CI, Feuille F, Cochran DL, Mellonig JT. Clinical and histologic evaluation of bone-replacement grafts in the treatment of localized alveolar ridge defects. Part 2: bioactive glass particulate. Int J Periodontics Restorative Dent. 2003;23:129-37.

Srinivasan S, Kumar PT, Nair SV, Nair SV, Chennazhi KP, Jayakumar R. Antibacterial and bioactive alpha- and beta-chitin hydrogel/nanobioactive glass ceramic/nano silver composite scaffolds for periodontal regeneration. J Biomed Nanotechnol. 2013;9(11):1803-16.

Basyuni S, Ferro A, Santhanam V, Birch M, McCaskie A. Systematic scoping review of mandibular bone tissue engineering. Br J Oral Maxillofac Surg. 2020;58(6):632-42.

Mayer Y, Zigdon-Giladi H, Machtei EE. Ridge preservation using composite alloplastic materials: a randomized control clinical and histological study in humans. Clin Implant Dent Relat Res. 2016;18(6):1163-70.

Nakajima Y, Fiorellini JP, Kim DM, Weber HP, Dent M. Regeneration of standardized mandibular bone defects using expanded polytetrafluoroethylene membrane and various bone fillers. Int J Periodontics Restorative Dent. 2007;27:151.

Stavropoulos A, Windisch P, Szendröi-Kiss D, Peter R, Gera I, Sculean A. Clinical and histologic evaluation of granular Beta-triicalcium phosphate for the treatment of human intrabony periodontal defects: a report on five cases. J Periodontol. 2010;81:325-34.

Lu J, Gallur A, Flautre B, Anselme K., Descamps M, Thierry B et al. Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits. J Biomed Mater Res. 1998;42:357-67.

Renooij W, Hoogendoorn HA, Visser WJ, Lentferink RH, Schmitz MG, Van Ieperen H et al. ioresorption of ceramic strontium-85-labeled calcium phosphate implants in dog femora. A pilot study to quantitate bioresorption of ceramic implants of hydroxyapatite and tricalcium orthophosphate in vivo. Clinical Orthopaedics and Related Research. 1985(197):272-85

Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res. 2002;63:408-12.

Schaefer S, Detsch R, Uhl F, Deisinger U, Ziegler G. How Degradation of Calcium Phosphate Bone Substitute Materials is influenced by Phase Composition and Porosity. Adv Eng Mater. 2011;13:342-50.

Yeo A, Cheok C, Teoh SH, Zhang ZY, Buser D, Bosshardt DD. Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micropig model. Clin Oral Impl Res. 2012;23(12):1322-32.

Deschamps IS, Magrin GL, Magini RS, Fredel MC, Benfatti CA, Souza JC. On the synthesis and characterization of βtricalcium phosphate scaffolds coated with collagen or poly (D, Llactic acid) for alveolar bone augmentation. Eur J Dent 2017;11:496502.

Maroulakos M, Kamperos G, Tayebi L, Halazonetis D, Ren Y. Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent. 2019;80:1-14.

Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomateriais. 2007;28:3338-48.

Bagambisa FB, Joos U, Schilli W. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J Biomed Mater Res. 1993;27(8):1047-55.

Okumura M, Ohgushi H, Dohi Y, Katuda T, Tamai S, Koerten HK et al. Osteoblastic fenotype expression on the surface of hydroxyapatite ceramics. J Biomed Mater Res. 1997;37:122-29.

Garagiola U, Grigolato R, Soldo R, Bacchini M, Bassi G, Roncucci R, De Nardi S. Computer-aided design/computer-aided manufacturing of hydroxyapatite scaffolds for bone reconstruction in jawbone atrophy: a systematic review and case report. Maxillofac Plast Reconstr Surg. 2016;38(1):2.

Wang H, Lee JK, Moursi A, Lannutti JJ. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J Biomed Mater Res Part A. 2003; 67:599-608.

Jarcho M. Calcium phosphate ceramics a hard tissues prosthethics. Clin Orthopaedics Relat Res. 1981;157:259-78.

Ricci JL, Blumenthal NC, Spivak JM, Alexander H. Evaluation of a low-temperature calcium phosphate particulate implant material: physical-chemical properties and in vivo bone response. J Oral Maxillofac Surg. 1992;50(9): 969-78.

Lee JS, Park WY, Cha JK, Jung UW, Kim CS, Lee YK, Choi SH. Periodontal tissue reaction to customized nano-hydroxyapatite block scaffold in one-wall intrabony defect: a histologic study in dogs. J Periodontal Implant Sci. 2012 Apr;42(2):50-58.

Han J, Ma B, Liu H, Wang T, Wang F, Xie C et al. Hydroxyapatite nanowires modified polylactic acid membrane plays barrier/osteoinduction dual roles and promotes bone regeneration in a rat mandible defect model. Biomed Mater Res A. 2018;106:3099-110.

Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg. 2001;71:354-61.

Sukumar S, Drízhal I, Paulusová V, Bukac J. Surgical treatment of periodontal intrabony defects with calcium sulphate in combination with beta-tricalcium phosphate: clinical observations two years post-surgery. Acta Medica (Hradec Kralove). 2011;54:13-20.

Thomas MV, Puleo DA. Calcium sulfate: Properties and clinical applications. J Biomed Mater Res Part B Appl Biomater. 2009;88: 597-610.

Walsh WR, Morberg P, Yu Y, Yang JL, Haggard W, Sheat PC et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res 2003;406:228-36.

Crespi R, Cappare` P, Gherlone E. Magnesium-enriched hydroxyapatite compared to calciumsulfate in the healing of human extraction sockets: radiographic and histomorphometric evaluation at 3 months. J Periodontol 2009; 80(2):210-18.

Moore WR, Graves SE, Bain GI Synthetic bone graft substitutes. ANZ J Surg. 2001;71:354-61.

Liao F, Chen Y, Li Z. Wang Y, Shi B, Gong Z et al. A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med. 2010;21:489-96.

Ge S, Zhao N, Wang L, Yu M, Liu H, Song A et al. Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold. Int J Nanomed. 2012;7:5405-14.

Jayash SN, Hashim NM, Misran M, Baharuddin N. Formulation andin vitroandin vivoevaluation of a new osteoprotegerin-chitosan gel for bone tissue regeneration. J Biomed Mater Res Part A. 2016;105:398-407.

Sheikh Z, Khan AS, Roohpour N, Glogauer M, Rehman I. Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications. Mater Sci Eng C Mater Biol Appl. 2016;68:267-75.

Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants. 1994;9:13-29.

Matassi F, Nistri L, Paez DC, Innocenti M. New biomaterials for bone regeneration. Clin Cases Miner Bone Metab. 2011;8(1):21-4.

Tatakis DN, Promsudthi A, Wikesjö UM. Devices for periodontal regeneration. Periodontol 2000. 1999;19:59-73.

da Silva Pereira SL, Sallum AW, Casati MZ, Caffesse RG, Weng D, Nociti FH, Jr., et al. Comparison of bioabsorbable and non-resorbable membranes in the treatment of dehiscence-type defects. A histomorphometric study in dogs. J Periodontol. 2000;71:1306-14.

Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. Polymeric biomaterials for scaffold-based bone regenerative engineering. Regen Eng Transl Med. 2019;5(2):128-54.

Murphy KG. Postoperative healing complications associated with Gore-Tex Periodontal Material. Part I. Incidence and characterization. Int J Periodontics Restorative Dent. 1995;15:363-75.

Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ et al. 3D-printed Bioresorbable Scaffold for Periodontal Repair. J Dent Res. 2015;94(9 Suppl):153S-7.

Wang X, Xing H, Zhang G, Wu X, Zou X, Feng L et al. Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold. Stem Cells Int. 2016:8741641.

Ignatius A., Claes LE In vitro biocompatibility of bioreabsorvable polymers: Poly (L, DL-lactide) e poli (L-lactide-co-glycolide). Biomaterials. 1996;17:831-39.

Stevens MM. Biomaterials for bone tissue engineering. Materials Today. 2008;11(5):18-25.

Aurer A., Jorgić-Srdjak K. Membranes for periodontal regeneration. Acta Stomatol Croata. 2005;39:107-12.

Masutani, K.; Kimura, Y. PLA Synthesis. from the Monomer to the Polymer. In Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications; Masutani, K., Kimura, Y., Eds.; The Royal Society of Chemistry: London, UK, 2014.

Chasin M. Biodegradable polymers as drug delivery systems. Vol. 45. Informa Health Care; 1990.

Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomateriais. 2000; 21 (23):2335-46.

Codari F, Lazzari S, Soos M, Storti G, Morbidelli M, Moscatelli D. Kinetics of the hydrolytic degradation of poly(lactic acid). Polymer degradation and stability. 2012;97(11):2460-66.

Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016;107:247-76.

Zhang Z, Ortiz O, Goyal R, Kohn J. Biodegradable Polymers in Principles of Tissue Engineering. 2014. p. 441-74.

Rodrigues MT, Carvalho PP, Gomes ME, Reis RL. Biomaterials in Pré-Clinical Approaches for Engineering Skeletal Tissues. 2015

Ikada Y. Challenges in tissue engineering. Journal of the Royal Society Interface. 2006;3(10):589-601.

Pillai CKS, Sharma CP. Suturas cirúrgicas poliméricas absorvíveis: química, produção, propriedades, biodegradabilidade e desempenho. J Biomaterials Appl. 2010;25(4):291-366.

Tiberiu N. Conceitos em análise biológica de materiais reabsorvíveis em cirurgia oro-maxilo facial. Oro-Maxillo-Fac Implantol (Romênia) 2011; 2 (1):33–38.

Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules. 2003;4(6):1466-86.

Peng C, Zheng J, Chen D, Zhang X, Deng L, Chen Z, Wu L. Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro. Mol Med Rep. 2018;18(2):1335-44.

Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan X, Yang J. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration. ACS Appl Mater Interfaces. 2019;11:37381-96.

Wang H, Leeuwenburgh SCG, Li Y, Jansen JA The use of micro- and nanospheres as functional components for bone tissue regeneration. Tissue Eng Part B. 2012;18:24-39.

Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-85.

Dababneh AB, Ozbolat IT Bioprinting technology: A current state-of-the-art review. J Manuf Sci Eng. 2014;136:061016.

Park C, Kim K, Rios H, Lee Y, Giannobile W, Seol Y. Spatiotemporally controlled microchannels of periodontal mimic scaffolds. J Dent Res. 2014;93:1304–12.

Ivanovski S, Vaquette C, Gronthos S, Hutmacher D, Bartold P. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res. 2014;93:1212–21.

Horn TJ, Harrysson OL. Overview of current additive manufacturing technologies and selected applications, Sci Prog. 2012;95 (Pt 3):255-82.

Saunders RE, Gough JE, Derby B. Delivery of human fbroblast cells by piezoelectric drop-on-demand inkjet printing, Biomaterials. 2008;29(2):193-203.

Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine, Recent Pat. Drug Deliv. Formul. 2012;6(2):149-55.

Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells, Biomaterials. 2005;26(1):93-9.

Fang Y, Frampton JP, Raghavan S, Sabahi-Kaviani R, Luker G, Deng CX et al. Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning, Tissue Eng. Part C Methods. 2012;18(9):647-57

Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusionbased bioprinting, Biomaterials. 2016;76:321-43.

Carter SD, Costa PF, Vaquette C, Ivanovski S, Hutmacher DW, Malda J. Additive biomanufacturing: an advanced approach for periodontal tissue regeneration. Ann Biomed Eng. 2017;45(1):12-22.

Zhang J, Chen Y, Xu J, Wang J, Li C, Wang L. Tissue engineering using 3D printed nano-bioactive glass loaded with NELL1 gene for repairing alveolar bone defects. Regen Biomater. 2018;5(4):213-220.

Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater Sci Eng R Rep. 2017;111:1-26.

Publicado

2021-09-23

Como Citar

Neves, D. de P., Santinoni, C. dos S., & Mori, G. G. (2021). Materiais Sintéticos e Impressão 3D na Regeneração Óssea Alveolar. ARCHIVES OF HEALTH INVESTIGATION, 11(2), 304–317. https://doi.org/10.21270/archi.v11i2.5559

Edição

Seção

Original Articles